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The objective of the ‘Family of Operating Systems ” project has been to investi gate
the feasibility of constructing sys tems which use identical or similar resources and
sh are basic •design decisions. The concep ts of “module”, “address space ” and
“hierarchy” have been used wi th special care.

Common to all family members Is the virtual ~,emory facility which controls dynamic
V address space transitions. Family members may differ in the facilities they provide in

static address spaces.
This report presents an overall description of the FAMOS system. Section 1

describes the basic ideas underlying the FAMOS system and Section 2 describes the
implerrent.,t ion. A more detailed description is found in the official documentation of

• the FAMOS system.2 This docume ntation consists of a number of “module documents ”.
Each module document comprises two parts , an introductory descri ption which
specifies the function and dependency of a module and a “type description ” which
defines the representation and implementation of a module as stat ic address space.
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1. The Fami’y Concept

1.1. Introduction
V 

The design, specification , implementa tion, documentation , and maintenance of a
general purpose operatir’~ system is without question a huge project , requ r~r~ many
man-years of effort. The finished product is usually just that - general purpcse. Such
a system can (is designed to) behave as any or all of a batch , timesharing,
communica tions , process control system, etc., at any time. A general purpose system
cannot be as efficient in any of its roles as would be a system speci f ically designed for

V one particu lar purpose. linfortunat&y, the develoorrent cost of oven a uni-purpose
system usually precludi’s the construction of several ind~pnndent such systems.

The FA~~~S project had two major goats. The f irst was a demonstrat ion of the
feas ibi lity of c t ’sIgnirw, a system f~iriii~v. The idea of a fami l y of operati ng systems
derives f r aN [Parnas ‘2a) and [Price 73). Members of a s’~ ster~ fam il y are
developed as f a r  as possible along c ommon lines to avo id as much re-des ;~ n and re—
coding as possibli . The software system fa mily cen~cpt is son’ — ’~ hat anale~~ u~. to the
harc~w a re co ncept i l lustr ated by the 1t3\Vt System/3~O series or th~ CEO PDP— 1 I fanuk ,
althoug h hardware families are generally oriented towards very similar user interfaces
among all family niembors. It might be argued that a particular computer is not well-
suited f~~r more than one or two types of service , and therefor e does not merit the V

dcveloprnen~ uf differing systems. While this may be true for larger machines (though
the m anu fac turers  might disagree), it is definitely not true for the proliferation of mini-
compute rs on the market , most of which have a very large range of possible V

applicatio~ s, and tend to tost less than the systems which run on them.

Our second goal concerned the documentat ion arid descriptio n of the fami ly. In
(Habermann 73). we proposed the description of a system at various levels of
abstraction. Each partial description consists of a specif ication , a lis t of decki~r.s, an
an at y~is , and an implementation description. The feasibility of this method has been
tested by applying it to the family design. An important aspect of the description is
that the spec if ication of a system facility Is sepa rated from its implementation. As a
result , the implementation may be changed w i thout affecti ng programs that rel y solely V

on the specif ications.

1.2. Oeoi~n Methodology

The approach used in structuring the design of the family is irzc romen ta~ mac hine
d.sigr ~, similar to that introduced by Dij kstra in the T.HE. system (Dijkstra 68) and
used in (Liskov 72] and (Neumann 74) among others. Incremental machine design
denotes building a system up level by level. Each level defines a I ’iVrtu3.L m~ich~ne for
use by higher levels. This machine models a hardware machine cl~sol y in the facilities
It provides to its users.

1
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The various system concepts are introduced in such an order that decisions which
• restrict the family are postponed as far as possible. The decisions which are made are

only those of specification , allowing various family members to share the specifi cation
of a level without necessaril y sharing its implementation.

A A
Time-sharing Batch

System System

I User interface I I Job Control Language
i i  i i

File System
11

Swapping
I I _________________ V

I Disk I/O
Process Control Process Creat ion

I Special ~~~~~~ I LA~dress Space Creationi

Synchroi~ization 1
i i  I I I

LProcess Management I
i i  I I  I i[~ Addres s Spaces
I I  1 1  I I

I Hardware

F igure 1: A fami ly of op.ro~sing sysrem.r

Figure 1 shows a possible relationship between famil y members. All the systems
share the specification of the addiess space management , process management , and
synchronization tev&s. The process control system, however , will not need to create
processes dynamically, nor to provide use’ facilities like the other systems. Instead, it
defines the special devices it will control. The batch system may use fixed memory
partitions, arid not need to do any of the swapp ing, which a t imesharing system must

— —— t ~~j S W ~~ ~_
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do. A very useful result of the design should be the compatibility of such things as
file systems between both the timesharin g and batch systems supplied by a vendor.

1.3. Functlon& Hierarchy

The fact that we use the concept of partitioning a system dt ’sign into le~eIs imp lies
nothing per se about the interaction among those leve ls. In part icular , the h erarch ial
structuri ng is based upon functions — not process es as emplu~ed in the T ~ L. s~Each level is comp rised of a set of functions whose names are st at icalk ~~~~~~ The
levels Le. L1, . t-n are ordered such that functions defined in level L.~ arr a

V
~~V i i  I~r~own

to ~~~ (and, at the discretion of L141, to L 1~2, etc.). L0 corres ponds to (h~ ha’~~w ar e
instruct~ons of the target machine. Each level , in fact , is rc~ ard,d as pros ding new
TM hard\~ a ic ” to the next higher level.

It is most important that the hierarchy Is am on~ f un ct i am~. One of the ~~
aga n~t the T .ItE. d~si~n is the overhead associated w ith inter~level co r u~~ c a t i a n

among processes. In a functional hie rarchy w h~r~ funct~or.s r~av actu a lly be macros , a
secluenct’ of function cal ls may result In a sing le machine instructi on (Or pcs~~hlv none
at all) when the s~ :~tem is compifod. It is the sv~ tem de~~ n ~ hich is hierarchic.~l, not
its imp ! 

~~“~~‘ nt at ion .

1.4. Modu1ariz~tion arid the Gra rt of Hierarchy

Parnas (Parnas 74 ) has noted that the not ions of level and module do riot
nocessar l y co ncide . We wish to elaborate upon this somewhat.

Information modules (Parnas 72b) are comprised of some data stru ctur es (possib ly)
and a set of functions which share knowledge of a particular design decision (reflected ,
for e~ampte , in tho details of the data structur es ) . A level is a set of function names
which are impirmented via functions in tower levels. There exists no necess ary
relationship between the two concepts. This riot only allows the division of a single
level ‘ ito several distinct modules , but in addition allaws for the selective spanning of
sever .il levels by a single module! For example , a process manager ma r be
implemented above the memory manager so that it can c reate processes dynamica~Iv.
Howe~ t i , the memory manager may need schod ul n~ f a c W t ies in e~dc r  to suspend
allocat ion requests when memory is full, This apparent demonstration of the futi l i ty of
the lov3l hierarchy can be resolved by the divi~iOfl of a module into more than one
teve l.

in f i gure 2 the memory and p ro cess management modules are intorleav~d in
auth a way as to not violate the function~j hierarchy. The two pieces of the memory
manager are part of the same module because they share knowledge about how virtual
memory structures are implemented (e.g. segment toNes and descri ptors). 1~’posing a
functional hierarch y may therefore (and in some cases does) result in a pro l i te rot ion of
levels , which produces a finer grained hierarchy than those found in systems
previously developed. However , as mentioned earlier , this does not neces s~rilv add to
run-ti me expense. I, 

— ~~~~~ V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ • V - - - 

j



_ _ _

4

Process Creation V

Segment Creation

Process Management

Segr~ent Management

Figure 2: Modules and hierarchy V

1.5. Virtual Machine C3finition

A good exam ple of a firm boundary between levels is the boundary between a
hardware machine and its programs. In this case the hardware provides a set of data
registers (memory, device control words , status words , accumulators , etc.) and a set of
Instructions for manipulating those registers. A program written for this parti :utar
machine is considered to be at a higher level , and ~ may or may riot use the hardware
“corre ctly”. There is no opportunity for violation of ~he order of the program and the
har dware.

The hardware can be used in a variety of ways , some of which have been
anticipated , and others which are erroneous. A typical example of erroneous use of V

hardware is an attempt to branch to an invalid address. Nevertheless , the hardware is
considered to be correct if the following type of statements hold:

1) Valid instructions operating upon valid registers yield results as predicted by
the specifications (e.g. the add instruction on large numbers results in overflow).

2) No sequence of instructions can cause irreparable damage to the machine.

3) When invalid instruc tions or invalid operands to instructions are detect ’ed, a
specified ac tion is taKen (such as a trap ) and side effects on registers behave as
specif ied f or each condition.

Note that the hardware has not failed it the programmer places the address of his

. 1 
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program code into the stack pointer reg ister , or fails to provide a valid interrupt word
before the clock expires. The correctness of the hardware lc~vel is determined without
regard to its use. The software level however , is dependent upon the correct
operation of the hardwa re (although it may attempt to be to lerant of intermitte nt
errors or failures ii a restrict ed portion of the hardware ) .

The hardware ana ’ogv provides a prototype fo r virtual machine interfaces. A virtual
marhine is a programmab le computer with re~~r.te rs, ins tructions , ar id speci f ied act ions
for ~s ll impr oper uses of the rn~ich ne. In general , a v irtua l machine is an incrementa l
modification of a lower level machine ca lled its base. Using the te rm “faci l it ies ” to mean
the reg i~te rs , instructions , and asynchronuu~ ~~t i~ ities of a given machine , the possible
modihcattons which a virtual machine can apply to it~ base may be classified as:

1) the hiding of a subset of the facilities - i.o. making them unavailable to higher
levels.

2) the definition of r.~v,’ fac ;~- les .

3) the systematic mod if ication of a subset of the exis ting f a c : V t eS.

Some cf the now reg isters may se r~~ the fu nct ion of t r a p o’ interrupt words for
higher level progr~im~. (We dif ferentiate traps , ‘~hich resul t d i rec t ~y f rcr~ pro~’,rarn
actions , from interr upts , wh ich resu!t fr om ext ’rn.-! asynchr onous even ts. ) A t r a p  word
provides an address to which control is to be passed if the trap or interrupt cond ition
occ urs. Th~ side ef f e cts of a trap are pa rt of t i e  specif icatio ns of the v i rtua’ machine.
Using this mechan ism , the higher level program can exerci se the functions of the
machine , handle erroneous uses (w hich in some cases may be des~rable - e.g. page
faults ), and process the results of asynchronousl y operating aspects of the vi rtual
machine.

1.5.1 Examp le 1

A low level machine migh t have f loating point operat ions which can resu!t in
underflow in magnitude , causing a tra p through a special reg ister known as the floating
point underf low trap word. A possible higher level m ac hin e mig ht make a sma ll change
to the base machine so that

1) the floating point underfiow trap word is hidden.

2) A “f loating point underflow countN reg ister and two operations on it , reed and
clear , are defined.

3) The floating point instructions of the base machine are systematically modified
so that the phrase “causes a tra p throug h the floating point undertlow trap
word” in the documentation is changed to read “causes the floating point
underftow count word to be incremented”.

A strai ghtforward imp lementation of this r’achri~ would be c rea ted by placing the

_________________ - - - ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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address of the underflow count increment routine in the float ing point underflow trap
word, and making available two routines “cl ear unidertlow ccunt” and “read underflow
count”. This’ software implementation requires that several other base machine
registers , namely the memory locations occupied by the count word and routines must
also be hidden.

1.5.2 Example 2

The function of a virtual machine might be to provide multiple versions of a facility
provided only once in the base machine. For examp le, a virtual clock level could
replace the single clock of the hardware w ith several clocks w h~ch may be started and
stopped independentl y of one another. In th s  case , many new interrupt conditions
w ould be created , and an interrupt register would be provided for each of the clocks
defined by the v i r tual clock level .

1.6. Implementation Alternatives

Should the rules implied by the level structure and the m~ dui .ir t r u c t u r ~~ be
checked at comp ile time or at run time? We decided to check funct iona l V i ~~~~ r , i r c h v  ~t
compi le t ime and module boundaries at run time. A j ust t t

~- a t en of these decisions
f ollows.

A compile time check h~s the obvious advantage that the check is performed onkV
once, bero-e execu tion starts.  k~ reover , a c omp iler can optimize the code across level
or module boundaries and gain a reduction in space and tin~e requirements. It seems
that for this reason both level hierarchy and modular structure should be checked at
compile time. Regarding hierarchy , we can atf ~ rd to check the valid ity of a function
cal l at cc’mp C time because of the earlier desi gn decis ion that fun~-t ion names are non—
computab le obje cts and can specify the level at the det init ion s te. That is, functi on
names behave as co nstants wh ich j r .~ known at cempi~e t ime. (This decision does not
preclude that the pa ramet e rs given in a func tion call , or their t~ res . may trigger the
Invocation of a particular version of the function , but all these versions carry the same

• function name and are at the same level.) Since a level is defined as a set of function
names, the rules defining hierarchy can be checked at compile time. Thus , a compiler
can ~pt im’ze code across level boundaries. As a result, it may be hard to find
hierarchy in the compiled code , a situation not unlike nested control structures which
are compiled into jump instructions.

Within modules , addresses of objects are computed at run time. This means that a
program may generate an incorrect address and unintent~’nallv modify arbitrar y
locations. In order to limit the damage which resu lts f r o m  inco rrec t  address
computations , we ass ociate a module with a collection of memory cells addressable only
b~ the functions which belong to the module. (This corresponds very closely to the
“inv s ble” reg is ters accessible by arithmetic log ic or microcode in hardware. ) Since

V 
addresses are computed at run time, t he check t hat a generated address is with in the
bounds of a module must be made at run time. Inter-module function calls require a

1
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change of environment which may or may not be expensive , depending upon the
appropriateness of the hardware. However, data local to a module is completely
protected from ex ternal addressing errors. Intra-module calls , since they do not
require a change of environment , can be compile-time optimized even across levels.

1.7. Description and Documentation

Description and documentation form an integral part of the design task. The
resulting family is not merely defined by its code, but exists as a document describing
modules of the systems at various abstract levels. The data associated with a module
is described by abstract data types. An abstract data type describes to the user of an
object the abstract states of such objects and the functions which manipulate them.
The “introductory description ” of a module specifies the data types used in a module.
A “typo descri ption” gives the data representation and the implementation of
operations for each data type.

The descrip tion method given above facilitates the understanding and modification of
modul~s. It allows a programmer to get acquainted with the system family without

V having to go through the tedious experience of deriving meaning from the code. in
particular , by separating the spec ifications in the introductory description from the
implementation in the type description , one can understand how to use a module
without having to understand every detail of the implementation. in addition, the
implementation of the abstract states of an object , or the implementation of the
opera t ions defined in a type definition, can be changed without affecting the users of
the typed object , provided that the specifications remain unaltered. An introduction to
the use of abs tract data types as a design tool may be found In (Flon 75).

Dijkstra observed in [Dijkstra 68) that level hierarchy facilitates the debugg ing
process. The hierarchy makes it possible to debug the levels one by one, start ij~g at
the lowest level. Abstract data types provide an additional debugging tool , since the
operations on typed objects can be tested independen tly of their call sites. Moreover ,
if a bug is found, the programmer can be sure that the errant code is limited to the
type definition in which the bug occurs. The strict separation of specific ation and
implementation makes it impossible for an implementation change in one place to
require additional changes ;~ an arbitrary number of other places.

1
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2. Family Implementation

2.1. IntroductIon

The three methods of transition among the various modules of a syst.m can be
summarized as:

1) sImple intra-module function calls

2) inter-module functIon calls

3) virt ual traps and interrupts

The concepts involved in this statement are considered to be universally basic to the
family, more sO than any others. Therefore , a protected version of those facilities
comprises the lowest system level. Price (Price 73) has shown that such a basis is
sufficient to guarantee adequate protection for the system and its users. His
prototype implementation established that Inter-module calls would not be Overly
expensive on a machine with appropriate hardware of a simple nature. The
Implementation described in this paper is a follow-up to Price’s work. The design is
somewhat simp lified with respect to inter-module connections. An important extension
is the processing of virtual interrupts, mentioned previously. The Integration of this
level with the design of hig her levels has led to more extensions and a growth of
confidence in the utility of the features provided.

2.2. The Address Space
V A module is characterized by

1) the Information for which It is responsible

2) the set of functions It provides to other modules for manipulating that
• Information

3) the set of modules of which it knows the existence

The instantiation (execution) of a module is characterized by

1) the function invoked and the subset of information it needs to operate

2) any additional Information passed to It via the parameter mechanism

The concept of addr.ss spac. is introduced to implement these notions. When a
module is defined, a stati c address space (SAS) is created for it (f igure Z~).Contained in the SAS are a segment tabLe (SI) which represents information loca l to alt
insta~cos of the module, and a funct~oa tabLe (FT) which is a vector of informat ion

S

_ _ _ _ _ _ _ _ _
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code
segment 

___________________________

ST FT KAST

- data — SAS k
segment — ____

~iFiguro 3~ Static address space ]

about the invocation of each of the possible module entry points . The ST is a vector
of s~~,i~ent descrip tors , each of which identifies a segment of memory, either by means
of .~i physica l address or indirectly via a reference to a sogment in another SAS. The
latt e r case allows for the sharing of segments among address spaces. A lso provided in
the SA S is the known add -cs: space table (KAST) which cons ists of a vector of SAS
names.

The functions in a module have no direct access whatsoever to any of these tables ,
Since an insteince of a function runs in virtual memory i.e. all addresses are relocated.
Instead, an active address space manipulates those tables by operat ions provided by
the virtual memory level (VM), including ASCALL and ,4SRETURN, which comprise the
mechanism for inter-module calls. V

ASCALL takes as parameters

1) a KAST index (i)

2) an FT Index (j) 
-

3) a list of parameters in the form of ST and PST indices (k,l,m,. ..)  V

4) an optional ST or PSI index q for the return segment.

in effect , ai inter-module call can be read a~ “call the i’th module I know about,
Invoking the j’th function it provides. Pass as parameters to that module the k’th, l’th, V

m’th, etc., segments I know about.” If the funct ion returns a segment , make it the q-th
segment.

The result V Ol an ASCALL is the creation of a dynamic address space (DAS). A DAS
consists of a working set (WS), a paratneter scglnei’u table (PSI), and an SAS reference
(figure 4). The WS is a vector of segment descriptors which comprise the virtual
address mapping for this DAS. The WS Is initialized by VM according to informat ion

I
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Figure 4: Dynanth, address space

taken from the cat led-address-spac&s FT, i.e. the code segment and a local data
segment. A virtual address of the form (w ,d) indicates the w’th WS segment with
displacement d. The PST is initialized by VM with indirect segment descriptors which
represent the parameter segments passed by the calling-address-space (access control
may be restricted).

When a f unction executes an ASRETURN instruction, the return segment (if any) is
stored in the caller ’s address space, the function’s DAS is erased and the DAS which
called it is resumed following its ASCALL. During execu t ion, a func tion may load and
unload the WS and ST with segments from ST or PST via the instructions SEGLOAD and
SEGUNLOAD.

ExampIo~ The behavior of ASCALL is illustrated in Figure 5. The calling program
would like to open a file. It makes an ASCALL on the file manager , passing as a
parameter a segment containing the file name. A segment will be returned which is an
open file. 

V

The program’s static address space (SAS USOr ) contains a segment table which has
descriptors for at least a code segment , data segment and file name segment. The
known address space table of SASuser contains a reference to the file manager
address space (SASf i le). The file manager SI contains descriptors for (at least) a code
and data segment. The data segment might contain the directory st ruc ture, mapping
file names to physical files. When the user program is executing, it has a dynamic

S
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Figure 5: ASCIqLL to OPEN a f a c
address space (DAS~,cer

) whose working set entries contain the ST and PST indices of
the segments currently addressable. DASUSOr also has a reference to SASuser and a
parameter segment table.

When the program executes

ASCALI(kast(3], 1, st(3), pst[3))
a new DAS (DAS file ) is created for the f ile manager (kast (3) SAS 1110 ). The function
to be executed is the fi rst in the FT of SAS t~,0. The function table descriptor in the FT
Indicates that the code for the funct ion is to be found in the first slot of ST. The new
PSI i~ loaded with a descriptor for the third segment in the SAS USCr segment table
(the data segment containing the file name). The last parameter indicates that a
segment will be returned , whose descriptor should be sto red in the third slot of
PST u50r. 0AS 1110 then executes the code segment , loading its data segment and the - •

parameter data segment into its WS , and e~’entu&ty creat ing a segment to describe the
state of the open file. When the called function completes and does an ASRETURN, the
descri ptor for the return segment is sto red in the caller ’s PSI (as specified by the
ASCALL), the t ile DAS is erased, and the user DAS Is resumed.

I
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2 3 Typed Segments

One of the problems arising from the desire to restrict data structure manipuiation
to a particular module is where the actual data should be kept. In the file manager
examp le above, the file manager could have retained the data segment describing the
open file in its own ST. Such an arrangement poses problems for billing, allocation and
pro tection. The file manager would own and be billed for resources which it was
holding for other users. Since all instances of the module share the same ST, it would
need to make some agreement about where these dynamically created segments would
go in the segment table. Furthermore , from a security viewpoint , a bug in some rarely
used function of the file manager address space could run rampant through the
segment table, destroying data belonging to users who had never invoked that
function.

We address these problems in the above implementation by returning the segment
describing the open file to the caller. This has good properties with respect to billing
and security, but circumvents the protection provided by modules , since the caller can
now read and write the returned segment indiscriminately.

Our solution to the latter problem involves the notion of “typed segments ”. Each
segment is marked with a type, which is simply the name of the SAS whi c h was
responsible for its allocation. Under normal circumstan ces , only the SAS of matching
type can load a segment into its working set , and hence read or modify it. In this way,
users may “own” file descri ptor segments , but they are prevented from chang ing them
except via operations provided by the file manager address space. In certain
circumstances , an address space may wish to grant another address space the right to
load one of its segments, such as when two address spaces are communicating via a
buffer. To handle such si tuations , we permit an address space to grant , to a called
func t ion, loading privileges on a parame ter segment of the caller ’s type.

Exaniple: After opening a file, the user program may wish to read the file. It does
so by calling the READ function of the file manager (see figure 6), passing as
parameters the file descriptor segment (of type “file manager”) and a buffer segment
(of the user ’s type), with loading privileges. This permits the file manager to write
into the buffer segment the data it obtains from the file referred to by the file
descriptor segment. Upon completion of the call , the data is available for the user ,
who retains ownership of both the buffer and file descriptor segments.

I
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Figure 6: ASCALL to READ a file

2.4. Processes and Modules

Although the concept of process is unknown to the VM level, some thought must be
given to the relationship between processes and modules in order that the higher
levels have appropriate “virtual hardware ” with which to work. In a conventional
sys tem, system code Is viewed as being executed by separate processes. When a user
requests a system function, his process is suspended while the system carr ies out his
request. The protection needs which prompted this approach are provided in our
system by the module mechanisms. Therefore a process can be thought of as a flow
of control which passes among various modules, some of which are user-wri tten and 

V

some of which are part of the system. A request for I/O, for example , involves the
process actually executing system code.

This leads to a view of processes flowing between modules in a call/ return manner ,
and allows for more than one process to execute a given module at the same time.
Any necessary synchronization is defined in the module itself. The call/ return
discipline of control flow in a process is mirrored in VM by an address space history

I
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(A SH), a stack of DASs reflecting the nesting of ASCALLs executed by the process.
Upon ASCALL, the DAS describing the calling environment is pushed onto the process ’s
ASH. Upon ASRETURN, the called environment is destroyed and the calling environment
is restored by popping it from the ASH.

VM maintains two ASH registers , referring to the current user process ASH and the
interrupt process ASH (lASH). (The justification for a separate interrupt ASH is
discussed below.) VM provides operations to set these registers , corresponding to the
action of a context swap. Each ASH is implemented in a separate segment (of type
ViA), so tha t a modu’e responsible for scheduling, for instance, can own a collect ion of
ASHs as components of process descriptors. Hence VM provides the primitive
mechanisms necessary to support the notion of processes, without over ly specify ing
the nature of a process.

2.5. Virtual Interrupts

We have reasoned that putting a protected addressing environment mechanism at
the lowest level of the system leads to strong modularity, and various other benefits.
Such a philosophy would suggest that a hardware interrupt should be mapped into a
protected procedure call , so that even interrupt processing routines can receive the
benefits of the protection mechanism. However , we quickly discovered that efficiency
precluded such a simple mechanism, because of the cost of the protected procedure
call. Our first solution was to have VM “modify ” all hardware devices into virtual
devices, which had less stringent timing constraints. This design was unsatisfactory,
because it was an instance of the philosophy, “for efficiency, put it in the kernel”,
w hich we sought to avoid. Our final solution was to put into VM a virtual interrupt
mechan~snz, then let the low-level interrupt routines share the addressing environment V

in w hich VM resides, even though conceptually the device routines executed on top of
the virtual machine defined by VM.

2.5.1 Devices as processes V

Devices are modeled as low-level processes which orddnarily execute on peripheral
hardware, but which sometimes call routines which must be executed on the CPU V

(interrupt routines). The device processes compete with the current user process for
access to the CPU. This competition is arbitrated by the hardware priority mechanism.
The user process may of course be executing in either user space or kernel space; the
device routines execute in kernel space. Thus it is only programming convention which
separates the device routines from the implementat ion of VM, even though
conceptually they are in separate modules.
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2.5.2 Virtual Interrupt Voctors

The process model for devices takes care of the worst of the timing constraints on
devices; it remains to provide a synchronization mechanism between the device
processes and the user system. For this purpose VM provides a set of uiru~~L
~ri terrupt vectors , and operations for setting them and for evoking them. Each register
is dedicated to a particular hardware device, and may be set to contain the name of an
SAS and a function with in that SAS which Is to be executed when a virtual interrupt
for that device occurs. Then any device process which needs to notify the user
system of some event may signal the occurrence of a virtual interrupt from its device,
via a VM operation.

Since the VM imp lementation is non-reentrant , virtual interrupts can only be
processed when the user process is not executi ng a VM operation. Consequently
vir tual interrupts are entered in a system of priority queues, w hich is polled by Vk4
after every VM operat ion. (Note that raising a virtual interrupt is a VM operation , so
that if the user process is interrupted by a device process while in user space , the
virtual interrup t is fielded as soon as it is raised.) Naturally, the queue of virtual
interrupts is protected from simu ltaneous access by masking all interrupts whi l e
modifying it.

The mechanism jus t described permits the low level interrupt routines to be stacked
by the li.’.r dware mech anism in the usual way, so that classical real-t ime pro~rarnrnitig
techniques apply. Only certain critical sections of VM turn off all interrupts , namely
the sections which save and restore state on interrupts end traps , and the virtual V

interrupt mechanism itself.

2.5.3 Virtual Interrupt Handling

When VM polls the virtual interrupt vectors after an operatio n, and discovers a
pending interrupt , it mus force an ASCALL to the address space entry point listed in
the vecto r . Instead of using the user ’s A SH for executing the protected procedures
VM uses a separate address space history, the lASH, for two reasons:

1. For billing purposes , It will be preferable to separate DAS’s associated with “theV System li from those associated with a particular user.

2. Interrupts often preci pitate rescheduling operations. The scheduler must be able
to swap user contexts (by resetting the ASH reg ister) and still be able to return to the
active DAS’s associated with its own and other virtua l interrupt routines.

All virtual interrupts share the same lASH; a high priorit y routine may force a
currently executing lower priori ty one to be stacked on the lASH, and later resumed
when the former is completed.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~ 
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26. Virtual Traps

The functional hierarchy of the modules of VU would not be practical for a real
operating system unless some means were available for exception handling. For this
purpose VU provides a set of virtual trap vectors , each associated with a particular
exceptional condition which VU is not programmed to handle. When such a condition
occurs, VU aborts whatever it was doing and forces an ascall to the function named in
the corresponding virtual trap vectorJn addition to conditions which arise within VU,
there are a set of uninterpreted trap vectors which higher levels of the operating
system may use for exception handling. For instance, when the clock module detects
that one of its virtual clocks has run out of time, it cannot call the module to which the V

virtual clock belongs, because that would violate the functional hierarchy. Instead, the
clock module associates a virtual trap vec tor with each virtual clock, and requires the
user of a clock to set the corresponding trap vector with an appropriate function; then
when the clock’s value drops to zero, the clock module may evoke a virtual trip to
whatever function is named in the trap vector.

I
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3. Some Implemented Modules -

3.1. Clocks

In order to accommodate fami ly members with different clOck usage requirements ,
two versions of the clock module were implemented. ~oth versions implement identical
speci f icat ions , but vary in the r &ati vo speeds of cloc k operations and in their storag e
requirements. The clock module uses the hardware line clock to provide a collection ci
clocks , removing the line clock from the v irtual machine presented to higher levels of
the system. The c loc ks could be used by higher levels for scheduling, accounting or
performance measurements.

There are seven operations app l icable to a clack. A clock can be turned on and off
and an ha~-e its alarm ~e t or tur ned off (“ en~ b~ ng ” a~d “c~~abling” the clocl~). The
cloc k t ime can be read and set. The function to ba cal led when a clock ’ s a l a r m  goes
off can be specified. When a clock is runmng, its t iMe 5 c~cremcn ted once every t m e

unit (0.1 seconds for the present systern~. If a c~ock is running with its a larm set and
it dec rcn-e nts~pa~.t zer O , an inte rrup t 5 S5L~~~~, c~ f ling the function ~t;sociated ~ ith the
clc’c ~~. At this e~ ~l of the system , there is no attempt to enforc e the notion of
ownershi p of a clock. A clock Iesource manager -would be designed at a higher ’ level
of some famil y members.

One implementation of the clock module uses an array of clocks . Since it is too
expensive to update clocks every time unit , all ~locks contain their time as of the last
clock interrupt. At that interrupt , the line clock ~‘as set to the shortest time value of
the running, enabled clocks. This value is saved in LASTVAL. At any instant , the actual
value of a running clock is: c lockti me - (LASIVAL - linec locktime) . This imp lementation
makes changes to the state of a clock quick and easy. in most cases , turning a c lock
on or off , disabling or enabling its alarm , or reading or settin g a clock time requires
changing the va lues in the clock , and perhaps changing LA STVAL and the line clock.
However , handling interrupts requires that every clock in the array be checked to
detc~mine whether or not it is running and should be updated. All clocks must be V

Inspected , even if only one is in use.

T he second imp lementation of the clock module maintains all running c locks in a
doubly-circularly -linked list. Each running clock contains the dif ference between its
time and the time of the clock preceding it, rather than its actual time. The next clock
to decrement past zero is desi gnated FIRSTRUNNING, and the clock whose alarm goes
off next is designated FIRSTEN..M3LED. To obtain a running clock’ s actual time , add the
values of all cloc ks between FIRSTRUNN!NG and that clock , and subtract (LASTVAL -l ine
clock time) as in the array imp lementation. In the list implementation , chang ing the
state of a clo c k is relatively expensive because inserting and removing clocks f rom the
ring is complex. However , interrupts can be handled ~ery q~~ckl y ,  since one need only
scan down the list past any clocks which have gone off and reset the values of
FIRSIRUNNING, F IRSTENA BL ED, LA STVAL and the line clock.

A system would use the array implementation if it ex pecte d to perfo rm clock

- - -.--- -*-—
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operations more frequentl y than clock interrupts occurred , or if space were tight ,
since the arra y implementation doesn’t need space for storage links. If the number of
running clocks var ied greatly during the running of the system , the array
implementation would be poor , since interrupt handling always checks the maximum
number of clocks ever used. The list implementation would be preferable if the clock
module would be primarily handling clock interrupts.

Since the specifications of both implementations are identical , they can be used
interchangeably, depending on performance requirements.

3.2. Processes

The process module imp lements the concept of a process. A process is t he
sequential flow of contro l through address spaces; it is represented by an address
space history. A process is executed by loading its ASH into the virtual stack reg ister V

provided by VM. The process module is decomposed into several functional levels.
The lowest level , process rnancigerner tt, has been desi gned and implemented. Process
creation is envisioned as a functional level depending on segment creation , and thus
residing higher in the hierarch y.

Process management makes available a fixe d number of processes and sets to which
processes belong. Processes in process sets are maintained in their order of arrival
and have waiting values associated wi t h them. The ready Iij t, a process set managed
by the process module , represents a collec t ion of processes that are ready to be
executed on a processor. The currently running process is the firs t element on that
list. A round-robin scheduling policy is implemented on the ready list with the aid of a
virtual clock. A virtual trap at the end of a specified number of tinie intervals s gnals
that the time slice which has been allotte d to the currentl y running process has
elapsed. This process is then moved to the end of the ready list and the next process
is dispatched. V

The process management level provides a collection of waiting lists ( sets of
processes ) and operations to move processes between waiting lists and the ready list.
A process always resides in exactly one process set. The current process can block V

by invoking the operation haitme , which removes the currently running process from
the ready list and places it into a specified waiting list with a given waiting value. A
process is reactivated through a conditionaL con tinue operation : A specified waiting
list is scanned from the beginning for a process with a wai ting key satisfying a
condition. If there is at least one such process , it is transferred to the ready list. The
waiting key of a process can be tested to see if it is equal to a value, not Less than a
value, or if the logical AND of the key and a value is non-zero. This mechanism is
sufficiently general to allow for priority scheduling on waiting lists and for the
implementation of several synchronization mechanisms.

a
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3.3. Synchronization

Synchronization is an example of the generation of two family members based on
the same underlying virtua l machine. Semaphores and path expressions are provided
as synchronization mechanisms. Either or both modules may exist in a system,
depending upon which synchronization tools are required by hi gher levels of the
system.

3.3.1 Semap hores

The semapho re module implements coua :irt g senzaph~rcs [Haberniann 723 with P

and V operations. A sema phore consists of a counter and a wait ing list for blocked
processes , provided by the proco~s fl V~~~ i C .  Prccc ~~es wa i t ing on a semap hore are

react ivak~d in first -in f~ st - out o rca r  uc~n: the opcr. t Or s on ~.aitirg lists provided by

the process module.

3.3.2 Path Expressions

The goal of path ~x r ressions is to state the concurrency restrictions on a shared

object at a higher level , analogous to control flow const ructs like the whILe-statement.
A shared object is descr ibed by a type definition, i.e. a spec if ication of its data
structure and a collection of operations for manipulation of an object V3f that type. A
path expression , defined for an object as part of its type definition, describes the
allowable sequences of ope rations , guaranteeing mutual exclusion of opera tions on the

shared ot j ect. All iri’o rmat iOn about the concurrency restrictions on a shared object is
localized in the path e~p~essiOn for its data typo.

The ba,uc path exp rc ~ i~rz is a regular express ion from wh ich a~l possible execution
sequences can be der ived . Its operands are the function names of operations , and the

operators are repc ~~tiorl ( * ), scqucac~n~q ( ; ), and cxc~uswc se 1ectt~on ( + ) ( in

precedence order , whic h can be overruied by parenthes es ). The path expression is

delimited by a Pat!; Er~d pair , wh~ch i~ p~es repet ition of the whole path expression .
For example the path ex press ion icr a I~Ie

pat h open ; ( read * wri t e ) ; close cr4

requires first the execution of an opc rt , then either one write or ( exclusive ly ) zero or

more reads , which must be fol lowed by a cLose before the path expressIOn can be

repea ted.

A path expression ca n be def ined by a determinist ic finite state machine, and can be

represented by a directed graph in which the nodes correspond to sta tes and an arc

labeled w ith funct ion name p indc ates the execution of p. A funct ion may execut e in

more than one path express ion state if repet ition of function names is permitted in a

path expression.

1
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Upon entry to a function a prologue is executed which determines whether the
funct ion is permitted to exec ute by checking the current path expression state
associated with the shared object. The process either is blocked on the path
expression wa iting list or enters th~ function body. The waiting key of a blocked
process contains all possible stat es in wh ich it may start execution. At the end of a
function execution , an epLLo~ue performs the state transition of the path expression. If
the path expression waiting list contains a process which may execute from the new
state , the ep ilogue activates the process and releases the critical section on the shared
obj ect.

Several extensions have been considered to the basic patti expression
(Habermann 75]Carnpbell !thesis) . We have implemented a restr icted form of the
numerical path eLement. A numerical path element permits specif ication of additional
constraints on the execution sequence of operations. It limits the number of
invocations of two functions relative to one another. For examp le the path expression

path ( push - pop ) ‘~ end

restricts the number of push and pop operations on a bounded st ac k to satisfy: s
pop ~ s push ~ s pap • it In order to permit a simp le and eff icien t implementation of
the numerical path element , a function name in a numerical path elemen t may not
appear more than once in a path expression. Every numerical path element in a path
expressi on has a counter containing the diffe ; once in the number of invocations of its
two functions and its own waiting list. A process try ing to execute a function in a
numerical path element wiLl be blocked if the invocation count would not satisfy the
numerical path element constraint. It can only be reactivated by another function in
the same numerical path element. The process then proceeds to check the path
expression state. The numerical path element condition is not required to be
reevaluated if the process blocks on the path expression state.

I
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4. Conclusion

Our first experience with the desi gn of a system famil y is favorable. We are
confident that we will be able to design several differing family members. Fundamental
to our design are the notions of level and module. The levels are constructed via an
incremental machine design. This method greatly enhances the design and debugging
processes because it becomes possible to concentrate on one level at a time. The
module concept leads to an unconventional ordering of the levels . Trad itionall y, one
finds the multiprogramming and processor allocation facilities immediate ly above the
hardware. However , since protection of modules is common to all fami ly members
where as the processor allocation strateg ies may differ from one member to another ,
the level placed on top of the hardware is the 01k’ which implements the protected
address spares in which modules operate . Other levels which have been d~’signed
include a virtual clock level to reside immediatel y above VM , and the process definition
level which resides above that.

The virtual memory system described has been implemented on a PDP-11/45 with
segmentation feature. Wo argue that it is a virtual machine as we have defined, by
providing a def inition of the base machine and the modifications made to it by this first
level.

The VMI machine is the PDP-1 1/45 with

1) the program stat us w ord , relocation reg isters , segmentation status registers ,
reg ister set 0, and emulate trap word hidden and therefore unavailable to the
user. Also, the halt , wai t , reset , and emulate instructions are no longer available.

2) new complex reg isters added, namely address spaces , working sets , known
address space tables , the ASH, etc. Also new instructions , namely “segload”,
“segunload”, “ascall ”, “asreturn ”, etc. are added to the instruction set.

3) all monwry references by Instructions systemat ica ll y altered from 16 bit physical
addresses to (working set slot , displacement~ pairs. All interrupt and trap
vectors are systematically altered from 16 bit physical addresses to (adflress
space, FT ~;sdex) pairs.

A module is described at various abstract levels so that its meaning does not have to
be derived from the coda. The building blocks for modules are type definitions. These
allow us to separate specification from implementation issues. Type def initions provide
yet another protec tion tool by limiting the extent of hugs. Continuation of the
research effort will produce several running family members with highly non-trivial
differences , inc luding batch and timesharing systems with widely differing storage
management strategies.

S 
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